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Abstract. We show that if a quasiperiodic two-symbol sequence obtained by the canonical
projection method has an infinite number of predecessors with respect to a substitution rule
σ , then σ is an invertible substitution rule.Vice versa, we show that every quasiperiodic
two-symbol sequence that has an infinite number of predecessors with respect to a non-trivial
invertible substitution rule can be obtained by the canonical projection method.

1. Introduction and summary

There are several methods currently known by which one-dimensional quasiperiodic
sequences of two symbols can be generated, cf for example Senechal [10, 11]. However, the
relationship between these different methods has not received much attention. This letter
aims to clarify the situation by explicitly pointing out the equivalence between quasiperiodic
two-symbol sequences obtained by the canonical projection method and quasiperiodic two-
symbol sequences that have an infinite number of predecessors with respect to an invertible
substitution rule. The main result is stated in theorem 1.4.

The most celebrated method for constructing quasiperiodic two-symbol sequences is
certainly thecanonical projectionmethod. In this method, one considers the intersection
of the standard latticeZ2 with the stripV + E , whereV is a square 1× 1 unit cell and
E is a linear subspace ofR2 (without loss of generality, we will assume here always that
the slope ofE is positive). A two-symbol sequence can be obtained from the orthogonal
projection of the subsetZ2 ∩ (V + E) of Z2 to E . In the case when the boundary ofV + E
has no intersections withZ2 (regular case), then this tiling contains only two types of tiles.
Assigning symbolsa and b to these tiles produces a bi-infinite sequence ofa’s and b’s.
The remaining singular cases may be interpreted as two-symbol sequences obtained as limit
points of regular sequences, cf [6].

Another popular approach towards quasicrystal sequences uses substitution rules. A
substitution rule defines a procedure of replacing the symbols in a sequence.

We say that a sequenceS ′ is a predecessor of a sequenceS with respect to the substitution
rule σ if σS ′ = S. Certain types of quasicrystal sequences are characterized by the fact that
they have an infinite number of predecessors with respect to a substitution rule. We will
call such sequencessubstitution sequences, cf definition 1.3. In this approach we follow De
Bruijn [3, 4] and Senechal [12].

† On leave from Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK.
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A well known example of a substitution rule is theFibonacci substitutionrule τ . It is
defined on a two-symbol alphabetA = {a, b} as

τ :

{
a→ ab

b→ a.
(1)

In short notation, we will writeτ(a, b) = (ab, a).
Bi-infinite two-symbol sequences that have an infinite number of predecessors with

respect toτ are known asFibonacci sequences. The Fibonacci sequences form a local
isomorphism class, i.e. any finite subsequence of a Fibonacci sequence occurs in every
other Fibonacci sequence. In general, wheneverS is a Fibonacci sequence,τS = S′ is also
a Fibonacci sequence (butS andS ′ need not be the same)†.

We now give definitions of what we call a two-symbol sequence and asubstitution
sequence.

Definition 1.1. We say thatS : Z → {a, b} is a bi-infinite two-symbolsequence, if there
exist n,m ∈ Z such thatS[n] = a andS[m] = b.

Definition 1.2. A bi-infinite two-symbol sequenceS is called a substitution sequence
whenever there exists a non-trivial substitution ruleσ so thatS has an infinite number
of predecessors with respect toσ , i.e. if for all n ∈ Z+ there exists a sequenceS(n) such
thatσnS(n) = S. A substitution ruleσ over {a, b} is non-trivial wheneverσ is not equal to
the identity substitution 1(a, b) = (a, b) or to the twofold substitutionχ(a, b) = (b, a)‡.
De Bruijn [3, 4] discussed certain explicit examples of substitution sequences that can
be obtained by the canonical projection method. Among the examples he discussed are
Fibonacci sequences: when the slope of the lineE is exactly the golden mean(1+√5)/2,
the two-symbol sequence describing the canonical projection tiling is a Fibonacci sequence.

However, Lucket al [5] have given examples of substitution sequences that are not
canonical projection sequences.

These observations naturally lead to the following questions:
(A) Which substitution sequences can be obtained by the canonical projection method?
(B) Which canonical projection sequences are substitution sequences?
Wen et al [15] conjectured that aσ -self-similar two-symbol sequence can be obtained

by the canonical projection method if and only if the corresponding substitution ruleσ is
invertible. The notion of invertibility used in this context is defined in relation to the free
groupF2(a, b). F2(a, b) consists of all sequences ofa’s, b’s and their ‘inverses’a−1 and
b−1. Here,aa−1 = bb−1 = e, theemptysequence. In this context, an invertible substitution
rule can be interpreted as an automorphism of the free groupF2.

Definition 1.3. A substitution ruleσ on two-symbol sequences is calledinvertible if σ has
an inverseσ−1, i.e. if σ ∈ Aut(F2).

The Fibonacci substitution ruleτ(a, b) = (ab, a) is invertible. Namely,τ−1(a, b) =
(b, b−1a), and it is readily verified that indeedτ ◦ τ−1(a, b) = (a, b)§.

We now need one more definition before we can state our main result.

† We say that two sequences are the same whenever they are shift-equivalent: two bi-infinite sequencesS andS′
are shift-equivalent when there exists anm ∈ Z such thatS[n] = S′[n+m] for all n ∈ Z.
‡ Note that every bi-infinite two-symbol sequence over{a, b} has an infinite number of predecessors with respect
to the substitutions 1 andχ .
§ Although the inverse of a substitution rule may involve inverse symbols, it should be noted that in our context
substitution rules are not allowed to involve inverse symbols.
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Definition 1.4. µ > 1 is a reduced quadratic irrationalwhenµ is a root of a quadratic
equation with integer coefficients and its conjugateµ′ (the other root of this equation)
satisfies−1< µ′ < 0.

Finally, we call a canonical projection sequence quasiperiodic when the slope ofE is
irrational (and not equal to∞ or 0).

The main result of this letter is the following theorem establishing the intimate
relationship between quasiperiodic two-symbol sequences obtained by the canonical
projection method and two-symbol sequences generated by invertible substitution rules.
It answers the questions (A) and (B) posed above.

Theorem 1.5. Let S be a bi-infinite two-symbol sequence. Then,
(i) if S is a quasiperiodic canonical projection sequenceand a substitution sequence for

a substitution ruleσ , thenσ is an invertible substitution rule;
(ii) if S is a substitution sequence for an invertible substitution rule, thenS is non-

periodic and can be obtained by the canonical projection method;
(iii) if S is a quasiperiodic canonical projection sequence, thenS is a substitution

sequence if and only if the slopeµ of E—or µ−1 (if 0 < µ < 1)—is a reduced quadratic
irrational.

Our proof of this theorem will rely on earlier results of Series [13], Lunnon and Pleasants
[6], Wen and Wen [14], and Śeébold [10], and will be discussed in section 2†.

We now proceed with a discussion of the implications of theorem 1.5.
Theorem 1.5 settles a question raised by Lucket al [5] in a study of theatomic surfaces

of two-symbol chains generated by substitution rules. Different types ofatomic surfaces
were observed, ranging from one closed interval to fractal-shaped atomic surfaces. However,
the question on which property of the substitution rule decides the type of atomic surface
was left unanswered. If the two-symbol chain is defined as the orthogonal projection to a
linear subspaceE in R2 of points inZ2 representing the chain as a monotonic walk inZ2,
then theatomic surfaceis the orthogonal projection of the subset ofZ2 to the orthogonal
complementE⊥ of E . (For a more careful definition, see [5].) We now note that the atomic
surface of a substitution chain consists of precisely one closed interval if and only if the
substitution chain can be obtained by the canonical projection method. Hence, we find:

Corollary 1.6. Let S be a bi-infinite two-symbol substitution sequence for a substitution
rule σ . Then the atomic surface of this sequence consists of precisely one closed interval
if and only if σ is an invertible substitution rule.

Indeed, the examples given in [5] nicely illustrate the conclusion of theorem 1.5 (and
corollary 1.6).

Bombieri and Taylor [2] found that if a substitution rule on two symbols possess the
so-calledPisot property(satisfied by non-trivial invertible substitution rules, the substitution
sequence can be obtained as the subset of a sequence obtained by some projection method
involving the orthogonal projection of a subset of the intersection ofZ2 with a strip inR2.
From corollary 1.6 it follows that the projection method of Bombieri and Taylor is precisely
the canonical projection method if and only if the substitution rule is invertible.

† It should be noted that some of these papers deal with the setting of infinite, rather than bi-infinite two-symbol
symbol sequences. However, the ingredients we need here do not crucially depend on whether the sequences are
infinite or bi-infinite.
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The link provided by theorem 1.5 will be useful in the study of physical properties of
one-dimensional canonical projection quasicrystals. In particular, in the context of trace
maps related to discrete Schrödinger equations on two-symbol substitution chains, it has
become clear that the invertible substitution rules form a subclass of all substitution rules
that possess very particular properties [7, 8, 14]. It was mainly in this context that the result
of theorem 1.5 was anticipated in [15].

It remains an important open problem to understand the general relationship between
substitution rules and the canonical projection method in constructing bi-infinite symbol
sequences of more than two symbols and two- and three-dimensional quasicrystal tilings.

2. Proof of theorem 1.5

Every bi-infinite two-symbol sequenceS that is constructed by the canonical projection
method can also be obtained by recording where the boundary ofV + E intersects the lines
x ∈ Z and y ∈ Z and assigning symbolsa and b to the respective intersection points. A
sequence obtained by the latter construction was called acutting sequenceby Series [13].
Lunnon and Pleasants [6] proved the following equivalence.

Theorem 2.1. ([6].) Let S be a bi-infinite two-symbol sequence. ThenS is a cutting
sequence if and only ifS is a characteristic sequence.

In order to appreciate this result, we need the definition of a characteristic sequence.

Definition 2.2. (Characteristic sequence.)A bi-infinite two-symbol(a, b) sequenceS is
calledcharacteristic, if it can be reduced in a unique way into a sequence of predecessors
with respect to the substitution rulesα(a, b) = (a, ab) andβ(a, b) = (ba, b).

With each characteristic sequence there is associated an infinite sequence of the
following operations:

ᾱ = a-reduction: remove everya preceding eachb;
β̄ = b-reduction: remove everyb preceding eacha.

We call ᾱ and β̄ the composition rulesassociated with the substitution rulesα and β.
The sequence of compositionsᾱ and β̄ is completely determined because at one time a
characteristic sequence has either no consecutiveb’s or no consecutivea’s. We refer to [6]
for details of the proofs.

Importantly, the substitution rulesα and β used to define reduction processes for
characteristic sequences are invertible. Namely,

α−1(a, b) = (a, a−1b) β−1(a, b) = (b−1a, b).

Wen and Wen [14] proved that every invertible substitutionσ can be written as the
composition of a finite number of the simple invertible substitutions

φ(a, b) = (a, ab) ψ(a, b) = (a, ba) χ(a, b) = (b, a). (2)

We see thatα = φ andβ = χ ◦φ ◦χ . In the reduction process for characteristic sequences
we thus only useφ andχ .

We will now proceed to show that substitution sequences for invertible substitution rules
are characteristic.
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Lemma 2.3. Let S be a bi-infinite quasiperiodic two-symbol sequence that is obtained by
the canonical projection method. Then ifS is a substitution sequence, the slopeµ of E—or
µ−1 if 0 < µ < 1—is a reduced quadratic irrational, andS has an infinite number of
predecessors with respect to an invertible substitution rule.

Proof. We first recall that when a quasiperiodic canonical projection sequence has an
infinite number of predecessors with respect to a substitution rule, thenE must be an
eigenspace of the substitution matrixM associated with the substitution rule, which is a
2× 2 matrix with non-negative integer entries and determinant±1 [5].

Series [13] has pointed out that the reduction process associated with a cutting sequence
of a line E in terms of compositions̄α andχ corresponds to a linear geometric algorithm
for calculating the continued fraction of the slope ofE , involving the linear transformation
induced by the substitution matrices ofφ andχ :

8 =
[

1 1
0 1

]
and X =

[
0 1
1 0

]
.

Importantly, Wen and Wen [14] showed that every matrixM with determinant±1 and
non-negative integer entries can be decomposed as a product of8’s andX ’s.

Hence, invariance ofE with respect toM implies that the slopeµ of E (or its inverse)
must have a purely periodic continued fraction expansion (which is equivalent to saying
that µ (or µ−1) is a reduced quadratic irrational [7]) and that the cutting sequence is a
substitution sequence for an invertible substitution rule (composition ofφ’s andχ ’s). �

Lemma 2.4. S is a quasiperiodic cutting sequence that has an infinite number of
predecessors with respect to the invertible substitutionσ = γn ◦ · · · ◦ γ0, with γi ∈ {φ, χ} if
and only ifS has an infinite number of predecessors with respect to the invertible substitution
rulesσ ′ = γ ′n ◦ · · · ◦ γ ′0, whereγ ′i ∈ {φ,ψ} whenγi = φ, andγ ′i = χ whenγi = χ .

Proof. We sketch the main idea. Every quasiperiodic two-symbol cutting sequenceS is
a so-calledtwo-distance sequenceand consists of consecutive blocks of the formban and
ban−1 (or abn andabn−1) for somen ∈ Z+ [6]. Now, it is not difficult to see that whenever
there exists a sequenceS ′ such thatS = φS ′, ψS ′ is also identical (i.e. shift-equivalent) to
S. It namely does not matter whether one reduces from the left or from the right. �

From lemma 2.4 it follows that whenever a sequence is a substitution sequence for an
invertible substiution, then it is also a substitution sequence for a substitution consisting of
a composition ofα’s andβ ’s (recall thatα = φ andβ = χ ◦ φ ◦ χ ).

Corollary 2.5. Let S be a substitution sequence for an invertible substitution rule. ThenS

is a characteristic sequence.

Proof of theorem 1.5. Parts (ii) and (iii) follow from theorem 2.1, lemma 2.3, and
corollary 2.5†. It thus remains to prove part (i). Lemma 2.3 asserts that every quasiperiodic
two-symbol canonical projection sequence is a substitution sequence for an invertible
substitution rule. It remains to verify that such a sequence does not have an infinite number
of predecessors with respect to some non-invertible substitution rule. This follows from a

† Note that a canonical projection sequence that is a substitution sequence is almost always quasiperiodic. The
exceptions correspond to non-interesting singular cases when the invertible substitution is equal toφn, ψn, χ◦φn◦χ ,
or χ ◦ ψn ◦ χ (for somen).
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recent result of Śeébold [10], who showed that whenσ is invertible (Sturmian) andσ andτ
generate the same subwords,τ must be invertible (Sturmian) too. This concludes the proof
of theorem 2.1. �

As a final remark, we would like to note that many detailed results on cutting sequences
(Sturmian sequences) and substitution rules (morphisms) have been obtained in recent years
in the context of theoretical computer science, cf Séébold [10] and the survey by Berstel
[1].

The discussions with Zhi-Ying Wen in 1993 (see [15]) formed the basis for my interest
in the relation between substitution sequences and canonical projection sequences. This
research was partially supported by aTalent Stipendiumof the Netherlands Organisation for
Scientific Research (NWO).
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